Approximate spline ofG2-continuity on a generalized hyperbolic paraboloid
نویسندگان
چکیده
منابع مشابه
A locally optimal triangulation of the hyperbolic paraboloid
Pascal Desnoguès Olivier Devillers y Abstract: Given a set S of data points in IR2 and corresponding data values for a speci c non-convex surface, the unit hyperbolic paraboloid, we consider the problem of nding a locally optimal triangulation of S for the linear approximation of this surface. The chosen optimality criterion will be the L2 norm: it means that we will try to nd directly a triang...
متن کاملINTERPOLATION BY HYPERBOLIC B-SPLINE FUNCTIONS
In this paper we present a new kind of B-splines, called hyperbolic B-splines generated over the space spanned by hyperbolic functions and we use it to interpolate an arbitrary function on a set of points. Numerical tests for illustrating hyperbolic B-spline are presented.
متن کاملOn Some Consequences of a Generalized Continuity
In normed linear space settings, modifying the sequential definition of continuity of an operator by replacing the usual limit "lim" with arbitrary linear regular summability methods G we consider the notion of a generalized continuity ((G1,G2)-continuity) and examine some of its consequences in respect of usual continuity and linearity of the operators between two normed linear spaces.
متن کاملOn Differentiation of Integrals and Approximate Continuity
The following discussion is closely connected with Lebesgue's theorem that the derivative of an integral is equal to the integrand almost everywhere. I t is well known that in generalizing this theorem to higher dimensions, great care must be exercised in the choice of the systems of intervals or sets used for ^-dimensional differentiation. Lebesgue had already observed that arbitrary intervals...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2013
ISSN: 0377-0427
DOI: 10.1016/j.cam.2013.01.018